Fast computation of divided differences and parallel hermite interpolation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast computation of divided differences and parallel hermite interpolation

We present parallel algorithms for fast polynomial interpolation. These algorithms can be used for constructing and evaluating polynomials interpolating the function values and its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel arithmetic complexity is 0(log2 M + log N) for large M and N, where M 1 is the order of the highest derivative information and N...

متن کامل

Parallel Hermite Interpolation on Extended Fibonacci Cubes

This work suggests a parallel algorithm for Hermite interpolation on Extended Fibonacci Cube (n) EFC1 . The proposed algorithm has 3 phases: initialization, main and final. The main phase of the algorithm involves 3 2  N multiplications, N additions, N 2 subtractions and N divisions. In final phase we propose an efficient algorithm to accumulate the partial sums of Hermite interpolation in 2 )...

متن کامل

HIERARCHICAL COMPUTATION OF HERMITE SPHERICAL INTERPOLANT

In this paper, we propose to extend the hierarchical bivariateHermite Interpolant to the spherical case. Let $T$ be an arbitraryspherical triangle of the unit sphere $S$ and  let $u$ be a functiondefined over the triangle $T$. For $kin mathbb{N}$, we consider aHermite spherical Interpolant problem $H_k$ defined by some datascheme $mathcal{D}_k(u)$ and which admits a unique solution $p_k$in the ...

متن کامل

Fast Parallel Computation of Hermite and Smith Forms of Polynomial Matrices*

Boolean circuits of polynomial size and poly-logarithmic depth are given for computing the Hermite and Smith normal forms of polynomial matrices over finite fields and the field of rational numbers. The circuits for the Smith normal form computation are probabilistic ones and also determine very efficient sequential algorithms. Furthermore, we give a polynomial-time deterministic sequential alg...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 1989

ISSN: 0885-064X

DOI: 10.1016/0885-064x(89)90018-6